

MATERIALS PRECIOUS METALS

Precious Metals Presentation	E 02
Vacuum Deposition Materials	E 04
Sputtering Targets	E 06
Precious Metals Recycling	E 08

Precious Metals Presentation

Precious metal thin films play a role in a variety of industrial fields. We provide high-purity sputtering targets and vapour deposition materials in different shapes and sizes to suit every application.

We can supply the following precious metals:

GOLD

As the most malleable metal, gold can be processed into fine wire or thin foil. With an extremely high infrared ray reflectivity of 98.4%, thin films of gold are used in space shuttles to protect the crew from the sun's infrared rays.

Melting point	1064.18℃	
Boiling point	2800°C	
Density	19.32 g/cm³	
Electrical resistance	2.2.10 ⁻⁶ Ω.cm	
Thermal conductivity	319 W.m ⁻¹ .K ⁻¹	
Vickers hardness in annealed state	22	
Thermal expansion coefficient	14.2.10 ⁻⁶ /°C (20-100°C)	
Tensile strength	108 MPa	
Elongation	42%	

IRIDIUM

The increased hardness and anti-corrosion properties when alloyed with platinum and palladium have been applied to fountain pen nibs and balls for ball pens.

Melting point	2446°C	
Boiling point	4527°C	
Density	22.56 g/cm³ (20°C)	
Thermal conductivity	147 W.m ⁻¹ .K ⁻¹	
Vickers hardness in annealed state 220		
Thermal expansion coefficient 6.4.10-6/°C (20-100		
Tensile strength	1088 MPa	

PALLADIUM

Palladium can absorb 350-850 times its own volume of hydrogen (at room temperature). With good permeation properties, palladium exhibits unique capabilities in high-purity hydrogen manufacturing equipment.

Melting point1555°CBoiling point3167°CDensity12.16 g/cm³ (20°C)Thermal conductivity72 W.m¹.K¹Vickers hardness in annealed state41Thermal expansion coefficient11.8.10°6/°C (20-100°C)Tensile strength170 MPaElongation40%			
Density 12.16 g/cm³ (20°C) Thermal conductivity 72 W.m¹.K¹ Vickers hardness in annealed state 41 Thermal expansion coefficient 11.8.10-6/°C (20-100°C) Tensile strength 170 MPa	Melting point	1555℃	
Thermal conductivity 72 W.m ⁻¹ .K ⁻¹ Vickers hardness in annealed state 41 Thermal expansion coefficient 11.8.10 ⁻⁶ /°C (20-100°C) Tensile strength 170 MPa	Boiling point	3167℃	
Vickers hardness in annealed state Thermal expansion coefficient Tensile strength 11.8.10-6/°C (20-100°C) 170 MPa	Density	12.16 g/cm³ (20°C)	
Thermal expansion coefficient 11.8.10 ⁻⁶ /°C (20-100°C) Tensile strength 170 MPa	Thermal conductivity	72 W.m ⁻¹ .K ⁻¹	
Tensile strength 170 MPa	Vickers hardness in annealed state	41	
	Thermal expansion coefficient	11.8.10 ⁻⁶ /°C (20-100°C)	
Elongation 40%	Tensile strength	170 MPa	
	Elongation	40%	

PLATINUM

Platinum performs a variety of roles from vehicle exhaust gas purification catalyst to the basis of cancer-fighting agents. It is one of the precious metals with tremendous undiscovered powers.

Melting point 1768°C		
Boiling point	3827℃	
Density	21.37 g/cm³	
Thermal conductivity	72 W.m ⁻¹ .K ⁻¹	
Vickers hardness in annealed state 41		
Thermal expansion coefficient	8.8.10 ⁻⁶ /°C (20-100°C)	
Tensile strength	123 MPa	
Elongation	40%	

RHODIUM

Chemically stable, rhodium will dissolve gradually in aqua regia when in a powder form, but will not dissolve in acid or aqua regia when in a solid form. Rhodium plating plays a large role in searchlight reflectors and elsewhere performs a decorative function.

Melting point	1963℃	
Boiling point	3727℃	
Density	12.44 g/cm³ (20°C)	
Thermal conductivity 150 W.m ⁻¹ .K ⁻¹		
Vickers hardness in annealed state	101	
Thermal expansion coefficient	8.2.10 ⁻⁶ /°C (20-100°C)	
Tensile strength	strength 695 MPa	
Elongation	5%	

RUTHENIUM

Hydrogen is formed through the breakdown of water by the sun's rays in a non-polluting hydrogen energy system that stores hydrogen as fuel. Hopes are rising that ruthenium will act as the essential catalyst to realize this future energy source.

Melting point	2250℃	
Boiling point	3900°C	
Density	12.06 g/cm³ (20°C)	
Thermal conductivity 105 W.m ⁻¹ .K ⁻¹		
Thermal expansion coefficient	9.1.10 ⁻⁶ /°C (20-100°C)	

SILVER

Silver is used in large quantities in the form of silver nitrate as a photographic sensitive material. This metal also has the most superior reflectivity of visible light rays of any metal. For this reason, silver is used in mirrors requiring high light reflection.

Melting point	961.78℃	
Boiling point	2210°C	
Density	10.50 g/cm³	
Electrical resistance 1.62.10-6 Ω.cm		
Thermal conductivity 428 W.m ⁻¹ .K ⁻¹		
Vickers hardness in annealed state	24	
Thermal expansion coefficient	18.9.10 ⁻⁶ /°C (20-100°C)	
Tensile strength 147 MPa		
Elongation	51%	

Vacuum Deposition Materials

We supply materials for the physical vapor deposition as pure elements or alloys upon customer request.

FEATURES

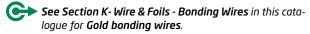
- Sputtering target materials without pinholes, oxides or gases.
- High-purity precious metal vapor deposition materials can be processed into granules, blocks, rods, wires and other forms.

TYPES

	STANDARD ITEMS	HIGH PURITY ITEMS	TYPICAL ALLOYS
Gold series	4N	5N+	AuAg, AuCo, AuGe, AuNi, AuPd, AuSb, AuSi, AuSn, AuZn
Platinum series	3N5	5N+	PtRh, PtPd, PtCo, PtNi, PtCu
Iridium series	3N	4N+	IrMn
Rhodium series	3N	4N+	-
Palladium series	3N5	4N+	AuPd, PdNi, PtPd
Ruthenium series	3N	4N+	-
Silver series	4N	5N+	AgAu, AgCu, AgGe, AgGeSn, AgNi, AgSi

APPLICATIONS

Thin film for die-bonding, LED (electrodes), quartz crystals (patterning electrodes), CD-R, DVD, gate electrodes for electronic devices, electrodes for electronic devices and oxide dielectric elements, etc.



DELIVERY FORMS

- Pellets (diameter 3 mm x 6 mm long kept in inventory for Au, Pd and Pt)
- Tube
- Rod
- Target
- Wire [evaporation wires and bonding wires (from 18 μ diameter)]
- Foil
- Ribbon
- Cone
- Others on request

Please ask for your dimensions.

All sputtering targets and evaporation materials dedicated to vacuum thin films are delivered along with a specific certificate of analysis.

Sputtering Targets

We provide high-purity sputtering targets in different sizes to suit every application:

• flat targets, all diameters and dimensions:

GOLD Base

CHEMICAL	FORMULA	PURITY*
Gold	Au	99.99/99.999
Gold Germanium (88/12 wt%)	Au-Ge	99.999
Gold Palladium (60/40 wt%)	Au-Pd	99.99
Gold Tin (70/30 wt%)	Au-Sn	99.99
Gold Zinc (92/8 wt%)	Au-Zn	99.99

RHODIUM Base

CHEMICAL	FORMULA	PURITY*
Rhodium	Rh	99.8/99.95

RUTHENIUM Base

CHEMICAL	FORMULA	PURITY*
Ruthenium	Ru	99.95

IRIDIUM Base

CHEMICAL	FORMULA	PURITY*
Iridium	lr	99.8/99.95
Iridium Manganese (20/80 wt%), (75/25 wt%), (80/20 wt%)	Ir-Mn	99.95

SILVER Base

CHEMICAL	FORMULA	PURITY*
Silver	Ag	99.99/99.999
Silver Germanium (96/4 wt%)	Ag-Ge	99.995
Silver Germanium Tin	AgGeSn	99.995

Pd46

PALLADIUM Base

CHEMICAL	FORMULA	PURITY*
Palladium	Pd	99.95/99.99
Palladium Nickel (90/10 wt%)	Pd-Ni	99.95

Other alloys and purities are available on request.

PLATINUM Base

CHEMICAL	FORMULA	PURITY*
Platinum	Pt	99.95/99.99
Platinum Palladium (50/50 wt%)	Pt-Pd	99.99

See Section D - Sputtering Targets in this catalogue for additional services such as Backing Plates and Bonding of Sputtering Targets.

^{*}Purity based on metallic impurities.

Precious Metals Recycling

Precious metals are found in many shapes and forms in products that surround us. We cover all aspects, from the recovery and refining of scraps to re-manufacturing into products.

We accept for recycling all scraps containing:

- Gold, Au
- Platinum, Pt
- Palladium, Pd
- Silver, Ag
- Iridium, Ir
- Ruthenium, Ru
- · Rhodium, Rh

FEATURES

- Physical return and delivery as precious metal products.
- Proper equipments for any form of scraps.
- Management of scraps as a valuable based on international environmental standard.
- · Crushing scraps accepted.
- Recycling and precision cleaning of vapor deposition multiple layers is also available.

We will quickly determine the value of the pure metals and transfer it to you on your weight account.

neyco

30 avenue de la Paix 92170 Vanves - France Tel: +33(0)1 41 90 50 50 Fax: +33(0)1 41 90 50 51

www.neyco.fr

Materials E 2018-1

